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Abstract—TOPSIS is a multiple criteria method to identify solutions from a finite set of alter-
natives based upon simultaneous minimization of distance from an ideal point and maximization
of distance from a nadir point. TOPSIS can incorporate relative weights of criterion importance.
This paper reviews several applications of TOPSIS using different weighting schemes and different
distance metrics, and compares results of different sets of weights applied to a previously used set
of multiple criteria data. Comparison is also made against SMART and centroid weighting schemes.
TOPSIS was not found to be more accurate, but was quite close in accuracy. Using first-order and
second-order metrics were found to be quite good, but the infinite order (Tchebycheff norm, L-∞)
was found to decline in accuracy. c© 2004 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

There are a variety of multiple criteria techniques to aid selection in conditions of multiple
criteria. The acronym TOPSIS stands for technique for preference by similarity to the ideal
solution [1]. TOPSIS was initially presented by Hwang and Yoon [2], Lai et al . [3], and Yoon
and Hwang [4]. TOPSIS is attractive in that limited subjective input is needed from decision
makers. The only subjective input needed is weights. In this study, we consider three different
weight sources, reflected by equal weights, centroid weights, and weights obtained by regression.
All three sources are linear. We also consider three commonly used metrics (L1, L2, and L∞, or
alternative names P1, P2, and Pinfinity) to measure distance from ideal or nadir points.

TOPSIS has been applied to a number of applications [5,6], although it is not nearly as widely
applied as other multiattribute methods [7]. A variant of TOPSIS was used for selection of
grippers in flexible manufacturing [8,9]. TOPSIS was applied to financial investment in advanced
manufacturing systems [10]. In other manufacturing applications, it has been used in a case
selecting a manufacturing process [11] and in an application selecting robotic processes [12–
14]. Neural network approaches to obtain weights for TOPSIS have been applied [10], and
fuzzy set extensions implemented [15,16]. TOPSIS has also been used to compare company
performances [17] and financial ratio performance within a specific industry [18].
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2. TOPSIS METHOD

The idea of TOPSIS can be expressed in a series of steps.

(1) Obtain performance data for n alternatives over k criteria. Raw measurements are usually
standardized, converting raw measures xij into standardized measures sij .

(2) Develop a set of importance weights wk, for each of the criteria. The basis for these
weights can be anything, but, usually, is ad hoc reflective of relative importance. Scale is
not an issue if standardizing was accomplished in Step 1.

(3) Identify the ideal alternative (extreme performance on each criterion) s+.

(4) Identify the nadir alternative (reverse extreme performance on each criterion) s−.
(5) Develop a distance measure over each criterion to both ideal (D+) and nadir (D−).
(6) For each alternative, determine a ratio R equal to the distance to the nadir divided by

the sum of the distance to the nadir and the distance to the ideal,

R =
D−

D− +D+

(7) Rank order alternatives by maximizing the ratio in Step 6.

Thus, TOPSIS minimizes the distance to the ideal alternative while maximizing the distance to
the nadir. There are a number of specific procedures that can be used for Step 2 (developing
weights), and for Step 5 (distance measures). Additionally, different conventions can be applied
to defining best performance (Step 3) and worst performance (Step 4).

A number of distance metrics can be applied. Traditional TOPSIS applied the Euclidean norm
(minimization of square root of the sum of squared distances) to ideal and nadir solutions, a
second power metric (P2). TOPSIS2 is a variant where distance was measured in least absolute
value terms, a first power metric (P1). Another commonly used metric is the Tchebychev metric,
where the minimum maximum difference is the basis for selection. This coincides with an infinite
power-term (P∞).

A relative advantage of TOPSIS is the ability to identify the best alternative quickly [12].
TOPSIS has been comparatively tested with a number of other multiattribute methods [7]. The
other methods primarily focused on generating weights (Step 2 in the prior description), with one
method (ELECTRE, [19,20]) including a different way to combine weights and distance measures.
TOPSIS was found to perform almost as well as multiplicative additive weights and better than
analytic hierarchy process (AHP, [21]) in matching a base prediction model. When there were
few criteria, TOPSIS had proportionately more rank reversals. When there were many criteria,
TOPSIS differed more from simple additive weight results, and TOPSIS was also affected more
with diverse sets of weights. TOPSIS performed less accurately than AHP on both selecting the
top ranked alternative and in matching all ranks in this set of simulations.

3. EXPERIMENT

This study tests TOPSIS on baseball data, which was previously used to compare multiple
criteria methods [22]. The idea is that performance of a baseball team depends on a number of
criteria (ability to hit, power, speed, fielding, and pitching), and baseball provides many cases
where these data are available with known ranked outcomes. Here, they are used to compare the
effectiveness of alternative sets of weights as well as alternative distance metrics. The alternative
sets of weights are developed in three ways: equal weights, weights generated by ordinal rank,
and weights generated by regression. The simple multiattribute rating technique (SMART, [23])
uses a systematic procedure to estimate linear weights, much as regression fits data with a
linear function. Centroid weights [24,25] utilize ordinal input to generate weights. Alternative
distance metrics used are least absolute value, Euclidian, and Tchebycheff weights minimizing
the maximum criterion distance.
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Tests were run on ten decades of results. Using data mining techniques, the first five years
of each decade were used to train (identify relative weights through regression, determine the
minimum and maximum performance levels for performance scores). These parameters were
then applied to the last five years of data for each decade as a test. Nine combinations of weight
generation and distance metrics were tested. Two measures were used:

(1) selection of the top-ranked alternative (predicting the winner), and
(2) matching rank at the end of the season.

4. RESULTS BASED ON WINNERS

Table 1 gives results in terms of the number of correct winners predicted. Because baseball has
undergone significant expansion since 1961, the number of teams per season has varied from four
teams per division to ten. The term cases in Table 1 refers to the number of seasons played with
that number of teams. The proportion of correct results is biased by the number of alternatives.
Therefore, results were split out by number of teams per division. For instance, there were ten
competitions over the period 1901–1905 involving eight teams. After expansion in 1961, the
number of cases will vary as the number of teams per division changed often. The most complex
case was for the decade beginning with 1991. Table 1 reports the test results obtained from
training over seasons 1991–1995. Thus the test seasons were 1996 through 2000. In seasons 1996
and 1997, each league had three divisions, two of five teams each, and one of four. This was the
case for the American League throughout the period. However, the National League changed to
two divisions of five teams each and one six team division for the 1998–2000 seasons. Thus, the
1991 decade has seven cases of four teams, 20 cases of five teams, and three cases of six teams.

Of 144 opportunities, the SMART method was correct in 100, for a proportion of 0.69. Results
from [16] for the SMART method (based on regression) and the centroid method (weights gen-

Table 1. Number of winners predicted.

Decade Teams Cases SMART Cent
TC TC TR TR TE TE T

P1 P2 P1 P2 P1 P2 P∞
1901 8 10 7 7 7 6 7 7 7 5 4

1911 8 10 7 8 6 6 6 6 6 6 8

1921 8 10 4 5 4 4 5 3 7 5 3

1931 8 10 7 7 7 8 7 7 7 6 5

1941 8 10 7 7 7 6 7 6 6 8 4

1951 8 10 7 6 6 7 7 7 5 6 3

1961 10 6 6 4 5 5 6 5 4 4 1

1961 6 8 6 6 6 5 6 6 6 5 5

1971 6 12 9 10 9 7 8 8 6 7 6

1971 7 8 6 6 5 5 4 5 4 2 2

1981 6 10 8 3 8 8 8 9 7 7 6

1981 7 10 5 4 6 7 5 5 3 5 4

1991 4 7 5 1 5 4 5 5 3 3 1

1991 5 20 15 11 16 18 15 16 13 14 10

1991 6 3 1 0 2 1 1 1 2 1 1

Totals 144 100 85 99 97 97 96 86 84 63

TC: TOPSIS using centroid-generated weights

TR: TOPSIS using regression-generated weights

TE: TOPSIS using equal weights

P1: Linear metric (first power)

P2: Euclidian metric (second power)

P∞: Tchebycheff metric (minimize maximum distance—same for T C, T R, T E)
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erated from ordinal data) are given for comparison. The TOPSIS method using centroid weights
was almost as good as SMART on this measure, while TOPSIS based on regression was quite
close as well. TOPSIS based on equal weights was inferior.

Table 2 recaps Table 1 by number of teams, giving proportion of winners selected.

Table 2. Proportion of winners predicted.

Method 4 Teams 5 Teams 6 Teams 7 Teams 8 Teams 10 Teams Means

Cases 7 20 33 18 60 6

SMART 0.714 0.75 0.727 0.611 0.650 1.000 0.694

Centroid 0.143 0.55 0.576 0.556 0.667 0.667 0.590

TOPSIS centroid P1 0.714 0.80 0.758 0.611 0.617 0.833 0.688

TOPSIS centroid P2 0.571 0.90 0.636 0.667 0.617 0.833 0.674

TOPSIS regression P1 0.714 0.75 0.697 0.500 0.650 1.000 0.674

TOPSIS regression P2 0.714 0.80 0.727 0.556 0.600 0.833 0.667

TOPSIS equal P1 0.429 0.65 0.636 0.389 0.633 0.667 0.597

TOPSIS equal P2 0.429 0.70 0.606 0.389 0.600 0.667 0.583

TOPSIS equal P∞ 0.143 0.50 0.545 0.333 0.450 0.167 0.438

Of course, it is much easier to predict the winning team when there are four alternatives than
when there are ten. However, the number of cases (which, here, is the number of opportunities
to be right or wrong) is low for seasons with four or ten teams. The SMART method provided
a strong base to compare against. TOPSIS based on centroid measures and a P1 metric did
better in those seasons involving five, six, or seven teams, and TOPSIS based on regression and
a P1 metric did almost as well. The TOPSIS methods with equal weights (including P∞, where
weights are washed out) did much worse.

RESULTS BASED ON RANKINGS

To measure differences in complete rankings, Table 3 gives measures of the sum of absolute
value differences between predicted and actual finishes for all teams in each division. Cases here
are larger, because they reflect the number of finishing places in a season.

Table 3. Sums of absolute errors.

Decade Teams Cases SMART Cent
TC TC TC TR TR TR TE TE TE

P1 P2 P∞ P1 P2 P∞ P1 P2 P∞
1901 8 80 53 57 62 66 93 52 60 93 64 70 93

1911 8 80 65 61 62 62 93 63 66 93 72 72 93

1921 8 80 46 54 62 68 97 54 60 97 60 64 97

1931 8 80 50 53 54 80 95 52 58 95 70 72 95

1941 8 80 60 60 64 74 153 62 72 153 88 80 153

1951 8 80 59 65 66 72 116 64 70 116 84 84 116

1961 10 60 74 73 81 83 134 74 84 134 88 86 134

1961 6 48 29 29 31 29 71 29 29 71 35 37 71

1971 6 72 37 30 40 58 74 36 46 74 52 44 74

1971 7 56 17 31 32 38 70 42 34 70 64 66 70

1981 6 60 34 92 34 46 56 34 36 56 53 53 56

1981 7 70 64 120 64 72 95 64 70 95 75 71 95

1991 4 28 14 32 10 6 32 14 6 32 20 18 32

1991 5 100 60 90 40 50 108 60 52 108 76 74 108

1991 6 18 12 26 10 14 26 12 12 26 14 16 26
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The numbers in Table 3 count the sum of absolute differences between predicted and actual.
Table 4 recaps Table 3 by number of teams. Values were derived by the following formula:∑

|Ri −Rj |
cases

,

where Ri is predicted rank and Rj is actual rank.

Table 4. Average absolute rank differences.

Method 4 Teams 5 Teams 6 Teams 7 Teams 8 Teams 10 Teams Means

Cases 28 100 198 126 480 60

SMART 0.500 0.600 0.566 0.643 0.694 1.233 0.679

Centroid 1.143 0.900 0.894 1.198 0.729 1.217 0.880

TOPSIS centroid P1 0.357 0.400 0.581 0.762 0.771 1.350 0.718

TOPSIS centroid P2 0.214 0.500 0.742 0.873 0.879 1.383 0.824

TOPSIS regression P1 0.500 0.600 0.561 0.841 0.723 1.233 0.718

TOPSIS regression P2 0.214 0.520 0.621 0.825 0.804 1.400 0.761

TOPSIS equal P1 0.714 0.760 0.778 1.103 0.913 1.467 0.922

TOPSIS equal P2 0.643 0.740 0.758 1.087 0.921 1.433 0.914

TOPSIS equal P∞ 1.143 1.080 1.146 1.310 1.348 2.233 1.324

These average differences show that the P1 metric and P2 metric perform very similarly; both
are quite a bit more accurate than the Tchebycheff metric. The centroid and regression methods
yield very similar results, again, both doing better than the Tchebycheff metric. Since the output
is not expected to be normal, significance tests should be nonparametric. Spearman’s rho test
was used to evaluate significance. For the mean proportions predicted, using the significance test
based upon proportions at the error level of 0.05, the only significant differences are between
TOPSIS equal P∞ and every other method. Spearman’s rho between even the Tchebycheff
models and the other TOPSIS methods yield correlations greater than 0.999, due to the large
number of tests.

Following [26], the sum of squared rank differences needed to show significant difference by
number of teams (alternatives) was used as the basis for comparison at the 5% level. These
limits vary by the number of teams (alternatives) in a season, and are given in Table 5.

Table 6 provides the proportion of competitions that were not significantly different by the
Spearman’s rho limits given in Table 5.

With four cases, the P1 metric for both regression-based weights and equal weights had no
errors. The centroid weights did have errors. For those cases with ten teams, the method using
the P1 metric and regression-based weights again was the most accurate. Accuracy increases for
the most part with the number of teams, primarily due to the very rigid cutoff limit for small
alternative cases. This same feature accounts for the perfect accuracy of two methods when there
were only four teams (along with small sample size for that case). The P1 metric is slightly more

Table 5. Sum of squared absolute difference cutoff limits—Spearman’s rho.

Alternatives Count Significant at 5% Error

4 1

5 2

6 5

7 13

8 24

10 59

Source: [22]
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Table 6. Proportion not significantly different (5% error rate).

Teams Cent P1 Cent P2 Reg P1 Reg P2 Eq P1 Eq P2 Tcheb

4 .043 0.57 1.00 0.29 1.00 0.14 0.43

5 0.45 0.35 0.20 0.25 0.05 0.10 0.00

6 0.58 0.39 0.67 0.48 0.42 0.42 0.82

7 0.67 0.67 0.67 0.67 0.39 0.39 0.33

8 0.93 0.87 0.95 0.90 0.85 0.87 0.55

10 0.83 0.67 1.00 0.67 0.67 0.67 0.17

Total 0.72 0.51 0.74 0.65 0.58 0.55 0.49

accurate than the P2 metric. Both are much more accurate than the Tchebycheff metric. Of
the weighting approaches, regression-based weights are on average slightly more accurate than
centroid-generated weights (as would be expected). Both are much more accurate than equal
weights (again, as would be expected).

CONCLUSIONS

The inference drawn here is that TOPSIS is not noticeably more accurate than direct weighting
methods such as SMART. However, it is quite close in accuracy except when equal weights were
applied. Obviously, the key to accuracy in the TOPSIS method is to obtain accurate weights.
Either P1 or P2 metrics seem very good, but as the metric increases to infinity, accuracy seems
to decline (at least for the extreme of minimizing maximum distance).
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