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Abstract—This paper compares multiattribute decision analysis under conditions of partial in-
formation and ordinal input Difficult decisions based on partial information usually are dealt with
through obtaining more precise mput information The purpose of this paper 1s to present a technique
for systematically exploring the entire region within weight bounds established by ordinal input data
The center of mass of the product of weights and utilities is used Some consideration of sensitivity
analysis for this problem 1s presented (© 2001 Elsevier Science Ltd All rights reserved
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1. INTRODUCTION

Selection models are an important field within attribute analysis This area includes multiat-
tribute utility analysis (MAUT [1,2]), the simple multiattribute rating techmque (SMART [3,4]),
analytic hierarchy process [5], and other applications These methods use cardinal weight input
information

In multiattribute decision making, the derivation of weights 1s often a central step i elic-
iting decision-maker preferences [6] The difficulties in assessing preference weights have been
widely noted [7-9] Exsting methods try to infer human preferences based on exact statements
and evaluations—regardless of whether the humans mvolved have a clear understanding of the
questions that they are asked Weber [10] argues that decision-maker preferences are rarely struc-
tured enough to allow the successful application of most decision analysis methods Kirkwood
and Sarin [11] presented an approach to use partial weight and utility information as a means to
weed out clearly inferior alternatives before mvesting thorough analysis on the more attractive
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alternatives Podovski [12] gave four reasons why piecise evaluation of tiadeoffs may often be
cifficult or even 1impossible

(1) wnformation about the relative importance of criteria may be insufficient,
(2) tiadeoffs may be different for different levels of criteria values,

(3) the problem may be analyzed from different perspectives, or

(4) dafferent experts may specify different tradeoffs

Kirkwood and Corner [13] suggested that the use of approximate weights would simplify deci-
sion analysis, since detailed elicitation of weights can be both time consuming and inconsistent
Sensitivity analysis of weights 1s often msightful [14,15] Hauser and Tadikamalla [16] aigued
that the analysis of inconsistency may reveal useful information regarding the overall importance
of some uncertain judgements

The centroid approach [17-22] uses ordinal input information about relative weights rather
than cardinal mnput as used in MAUT and SMART Ordinal input information 1s expected to
be moie robust While less precise numerically, the ability of humans to state ordinal 1anking 1s
considered more reliable than precise ratio statements of iput [23]

The hnear utihty function model used in SMART and centroid approaches 1s

k
Maximize iju”, Vi=1ton, (1)
J=1

where w, 1s the scaling value (weight) assigned to the 7'M of k criteria, and u,; 1s the utility
for alternative 2 on criterion 3 The selection decision 1s to 1dentify which of the n alternatives
have the maximum value function This value function also can be used to rank oider the n
alternatives

SMART and AHP use the same overall model, but differ 1n how estimates of the model compo-
nents w, and u,, are determined SMART allows the decision maker to estimate both w, and u,,
directly on a 0-1 scale Edwards and Barron [19] presented swing weighting in the SMART
approach, using the same model described above, but based on a controlled means of estimating
the critena weights w, AHP uses eigenvalues of ratio pairwise comparisons for both w, and w,,,
yielding estimates ranging between 0 and 1

Solymos1 and Domb:1 [22] piesented a technique using nteractive elicitation of preference
weights among pairs of criteria The core of the method 1s that preference information among
cniteria provides knowledge about the bounds of specific weight values They used the centroid
of this bounded area as a hkely estimate of true weights The centroid method (SMARTER,
1n [19]) uses the same overall model as SMART, only using ordinal input information Maximum
error 15 minimized While continuous weight estimation methods, such as multiattribute utility
theory models or analytic hierarchy models, would be expected to be more accuiate estimators
if preference input were accurate, the centroid approach 1s based on sounder input, and 1s less
subject to the errors introduced by maccurate weight assessment Flores et al [24] found that
the centroid approach was useful when there were four or more criteria being considered, when
criteria were close 1n relative importance, and when time available for analysis was short

There 1s an umportant issue that has not been examined and implemented until now Although
the centroid approach considers bounds on specific weight values, 1t uses the centroid pomnt of
weights only Estimation of this centroid point 1s only one possible way to use information about
the configuration of the bounded area In this paper, we first compaiatively demonstiate SMART,
then centroid, and then a new method using ordinal input information about weights as well as
utility measures on each criterion

The purpose of this paper 1s to extend the centroid approach to explote the entire region
within weight bounds based on ordinal nput, and to examme sensitivity analysis i centioid
models considering utiities This may allow deeper evaluation of existing alternatives The
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paper also examunes the improvement of values in the current conditional utihities of existing
alternatives needed to raise alternative performance to the level where 1t 1s clearly preferable to
the other alternatives

2. SMART

The simple multiattribute rating techmique uses a linear additive model to estimate the value
of each alternative as discussed above The method begins with 1dentifying the decision and the
responsible decision-maker (Step 1), the 1ssues important 1n the decision (criteria, Step 2), and the
alternatives available (Step 3) Each criterion’s measurement scale 1s established in Step 4, along
with measures as given n the table above Step 5 1s to eliminate dommated alternatives (one
alternative dominates another 1f 1ts performance 15 at least as good as the dominated alternative
on all criteria, and better on at least one criterion) Step 6 1s to develop single-attribute utilities,
reflecting how well each alternative does on each criterion In Step 7, swing weighting 1s apphed
to determine weights for the linear additive model This operation begins with rank-ordering
criteria, considering their measurement scales The decision-maker 1s asked to compare two
criteria, beginming with identifying which criterion would be most attractive to improve from
the worst attainment considered to the best attainment considered This provides a basis for
rank-ordering criteria {after considering scale) Step 8 would be to obtain estimates of relative
weights by comparing the most important criterion with each of the others, by asking the decision-
maker to assess how important the other criteria would be should the most important criteria be
worth 100 Weights are obtained by normalizing (sum the assessed values, and divide each value
by the sum) The last step (Step 9) of the swing-weighting approach 1s to obtain values for each
alternative using the formula given above (sum of products of each weight times utility values
for each alternative)

We use an example decision of siting a new facility There are seven alternative locations
available, with four criteria important to the decision Cost (in milhons of dollars) 1s to be
mummzed Growth potential (in thousands of potential customers) and skilled labor available
are to be maximized Transportation availlability 1s a subjectively measured concept The matrix
of alternative attaimnments 1s presented in Table 1

Table 1
Cost Customer Skilled Labor Transportation
($ Milhon) (Thousands) (Workers)

New York 136 500 3000 great
Los Angeles 128 600 3600 great
Phoenix 116 480 2800 good
Houston 114 450 2900 good
Denver 112 370 2600 good
Dallas 109 350 2400 fair

Nashville 106 280 1200 poor

As applied to the decision problem given above, the decision is to select a site for a decision
maker The objective lhierarchy 1s simply the four criteria The seven alternatives given mn the
table above 1dentify the alternatives, as well as the dimensions by attributes matiix The Los
Angeles site dominates the New York site (LA 1s better on cost, growth potential, and skill
availability, while the two alternatives have equal ratings on transportation availability), so the
New York site could be eliminated However, the decision-maker might be interested in seeing
the relative performance of New York, so we will keep the New York site for analysis
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Step 6 1s to develop single-dimension utilities For the first three criteria, data 1s provided
Anchors based on the smallest and largest expected values to be considered can be used to es-
tablish ranges, which are then used to convert measures into utiities Appropriate adjustments
of signs can reflect measures to be maximized and mmmzed Transportation availability mea-
sures provided were subjective, without numeric values These can be transformed mto utihities
categorically A rating of great could be assigned a utility value of 1 0, a rating of good a utility
value of 0 8, a rating of fair a utility value of 0 3, and a rating of poor a utihty rating of 0 This
would yield the final set of single-attribute utilities for the decision problem presented in Table 2

Table 2
Alternative Cost Growth Skull Transport
New York 0175 08 06 10
Los Angeles 0275 10 08 10
Phoenix 0425 05 04 08
Houston 0450 04 05 08
Denver 0475 025 025 08
Dallas 05125 02 02 03
Nashwville 0 550 01 01 00

3. DEVELOPMENT OF SMART WEIGHTS

The last required data 1s the set of relative weights for the four criteria The piocess of swing
weighting would begin by considering the possible range of measures for all criteria, and asking
mn turn which criterion would be most important to move from 1ts worst measuie to its best
measure (see Table 3)

Table 3
Criterion Worst Best
Cost ($ mullion) $15 mmllion | $7 mulhon
Growth potential 200,000 600,000
Skilled labor availability 1000 4000
Transportation Poor Great

In this case, the decision-maker might think that moving cost from $15 milhon to $7 million
was the most important of the four criteria Given that cost 1s the most important criterion,
the remaiming three criteria are considered in turn Moving growth potential from 200,000 to
600,000 might be considered as more important than the other two remaining criteria  Finally,
the last two criteria are compared m a similar manner For our purposes, we might assume that
moving skilled labor availability from 1000 to 4000 was considered more important than moving
transportation availability from poor to great These evaluations yield the rank order

Weost > Wgrowth > Wskill ~ Werans

The next step is to determine the relative weights This 1s done by asking the decision maker
what the relative importance of moving the other three critenia from their worst to best measures
would be 1f weost Were 100 A possible response might be as presented mn Table 4
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Table 4

Weost 100

Wgrowth 50

Wskill 25

Wtirans 12

Table 5

Weost 100/187 0535

Wgrowth 50/187 0 267

Wglell 25/187 0134

Wirans 12/187 0064

This would yield a total of 187, which could then be divided nto each of the measures to obtain
a normalized set of weights that sum to 1 0, as shown 1n Table 5

The last step of the SMART method with swing-weighting 1s to apply the original model to
calculate the weighted overall utility (value) for each alternative This consists of multiplying
the criterion weight times the alternative’s criterion utility over all four criteria, and summing
The results for this example are presented in Table 6 These value functions allow ranking of
the seven sites Los Angeles 1s a clear first choice, followed by Houston and Phoenix, which have
almost 1dentical value functions New York, while a dominated solution, 18 much preferred to
Denver, Dallas, and Nashville

Table 6
Alternative Cost Weost Growth Wgrowth Skill Welill Transp Werans Value
New York 0175 0535 08 0267 06 0134 10 0 064 0.452
Los Angeles | 0275 0535 10 0 267 08 0134 10 0 064 0.585
Phoenix 0425 0535 05 0267 04 0134 08 ’ 0 064 0.4657
Houston 0 450 0535 04 0267 05 0134 08 0 064 0.4658
Denver 0475 0535 025 0267 025 0134 08 0 064 0.405
Dallas 05125 | 0535 02 0267 02 0134 03 0 064 0.374
Nashville 0 550 0535 01 0267 01 0134 00 0 064 0.334

Weights can vary a great deal by decision-maker In this case, there was a moderate dispersion
of weights We check two other cases following Kirkwood and Corner [13] one with all four
criteria weighted equally, and one with greater dispersion in weights For the case with four
equal weights over criteria, see Table 7

In this case, Los Angeles remains the first choice, but now the dominated site at New York is
second 1n preference The relative order of the other five alternatives remains the same

A more diverse set of weights might assign Wl = 4Werans, Wgrowth = 4Wsiall, and Weosy =
4Wgrowth, ylelding a normalized set of weights shown n Table 8

These weights would yield value functions as shown in Table 9

Note that now the six nondominated alternatives are all very close in value, with Houston
holding a shght edge over Los Angeles, Phoenix, Nashville, Dallas, and Denver in turn New
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Table 7
Alternative Cost Weost Growth Wgrowth Skall Wslall Transp Wirans Value
New York 0175 025 08 025 06 025 10 025 0644
Los Angeles 0275 025 10 025 08 025 10 025 0 769
Phoenix 0425 025 05 025 04 025 08 025 0 531
Houston 0 450 025 04 025 05 025 08 025 0 537
Denver 0475 025 025 025 025 025 08 025 0 444
Dallas 05125 025 02 025 02 025 03 025 0 303
Nashville 0550 025 01 025 01 025 00 025 0.187
Table 8
Weost 64/85 | 0753
Werowth | 16/85 | 0188
Wl 4/85 | 0047
Wirans 1/85 | 0012
Table 9
Alternative Cost Weost Growth Wgrowth Skall Wslall Transp Wtrans Value
New York 0175 0753 08 0188 06 0047 10 0012 0 322
Los Angeles | 0275 0753 10 0188 08 0047 10 0012 0 445
Phoenix 0425 0 753 05 0188 04 0047 08 0012 0 442
Houston 0 450 0753 04 0188 05 0047 08 0012 0.447
Denver 0475 0753 025 0188 025 0047 08 0012 0.426
Dallas 05125 0753 02 0188 02 0047 03 0012 0 436
Nashville 0 550 0 753 01 0188 01 0047 00 0012 0 438

York 1s a great deal worse 1n value than the other six sites With this set of very diverse weights,

the relative ranking has been reversed

The centroid method 1s 1dentical to the SMART method, with the exception that weights are
assessed based on the rank order of criteria importance (considering scale) The centroid method
assigns weights as follows, where w; 1s the weight of the most important objective, wo the weight
of the second most important objective, and so on For k objectives,

4. CENTROID

k

(1 +1/2+1/3+  +1/k)
= % ,
O+1/2+1/3+ +1/k)
Wo = )
k
O+0+ +0+1/k)
Wy =
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The sum of these weights will equal 10 The more objectives that exist, the less error this
approximation nvolves For two objectives, wy = (14+1/2)/2 =0 75 and wp = (04+1/2)/2 =025
While this would minimize the maximum error (weight extremes would be w; = 1 and ws = 0,
wy; = 05 and we = 05), with only two objectives the error could be substantial With more
objectives, the error for ranked objectives will be much less Single-attribute utihities for each
criterion could be obtamned 1n the same manner as with SMART

For this example, considering the range of possible performance levels, the rank order of the
four criteria would be

Cost > Growth > Skill > Transportation

Weights would be estimated by finding the centroid, the mean of the four extreme points (see
Table 10)

Table 10
Cost Growth Skll Transport
10 0 0 0
05 05 0 0
0333 0333 0333 0
025 025 025 025
0 52083 | 0.27083 | 0.14583 | 00625

These weights could be applied directly as in SMART (see Table 11) The rank order of
alternatives obtained 1 this case are 1dentical to those obtained with the imtial weights in the
SMART example

Table 11
Alternative Cost Weost Growth Wgrowth Skl Wslalt Transp Wirans Value
New York 0175 0521 08 0271 06 0 146 10 0 062 0.458
Los Angeles 0275 0521 10 0271 08 0146 10 0 062 0 593
Phoenix 0425 0 521 05 0271 04 0 146 08 0 062 0.4649
Houston 0450 0521 04 0271 05 0146 08 0 062 0.4654
Denver 0475 0521 025 0271 025 0 146 08 0 062 0.401
Dallas 05125 | 0521 02 0271 02 0146 03 0 062 0 369
Nashwville 0 550 0521 01 0271 01 0146 00 0 062 0.328

5. CONSIDERATION OF CONDITIONAL UTILITY RANGE

Up to this point, what we have presented has been done before by studies referenced We now
extend this work by considering conditional utilities The analysis based on ordinal mput can be
carried one step further, by considering the possible ranges of conditional utihities on attributes
For the seven alternatives under consideration (with A; representing New York, A2 Los Angeles,
etc ), we denote

U(A,), Vi=1to 7 s the overall utility for each alternative using formula (1) above,
U(A), Vi=1toT7,Vy=1tods the conditional utility of attribute y for alternative ¢,
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subject to the following constraints
w, € [0,1], Yw, =1 (2)

We assume that the decision-maker has carried out the ordinal ranking of attributes (considering
attribute scales) and reached the conclusion that attribute 1 1s the most impoitant, attribute 2 1s
second-1n-1mportance, attribute 3 1s third-in-importance, and attribute 4 1s the least important
(If otherwise, we could simply renumber the attributes, so in further consideration, the attribute
with a smaller number will always be the attribute with a higher weight ) Then, the permissible
values of attribute weights are as follows

1 1 1 1
€ —al P € O;— ) Oa_ ) y 1
w1 [4 :| w2 |: 2:| 'w3€|: 3:I wy € [0 4:, (3)
wy +wz + w3 +wy =1, wy > We = w3 2 Wy

Expression (3) actually determines some bounded subset of weights obtained by the “narrowing”
of an mitial set (2) based on additional information about the ranking of attributes The extreme
points for such a bounded subset of weights are

{'LU1:1, 'LU2=0, w3=0a 'LU4:0}, {wlz

w —1 w——1 w——l wyg =0 =
_ _ _ we =
1 37 2 37 3 37 4 3 1

Taking mto consideration that the weights sum to one, and therefore,

[ I R

w4:1—(w1+w2+w3),

1t 1s possible to geometrically represent this bounded subset of weights in thiee-dimensional
space, where A{1,0,0}, B{1/2,1/2,0}, C{1/3,1/3,1/3}, and D{1/4,1/4,1/4} aie the vertices
of a triangular pyramid In the three-dimensional space of weights {w;, w2, w3}, each current
pont {wyr, war, wsr} within a triangular pyramid ABCD represents a permissible combination
of weights The overall utility (for currently analyzed alternative A,), corresponding to this point,
could be found as

Up(A,) = wiT * U1, + Wor * Uz, + War * Uz, + [1 — (w1 + war + w3r)] * ug (4)

As 1s known from linear programming, a linear objective function attamns its maximum and
minimum values at the boundaries of a feasible region For the case under consideration, linear
form (4) could achieve 1ts maximum and minimum values in the vertices A4, B, C, o1 D (or m
case of multiple optimal solutions at sides or planes connecting the points i question)

Therefore, knowing the values of overall utilities 1n extreme pomnts A, B, C, and D, we can
also estimate the maximum and mimmum level of overall utilities for any concrete values of
conditional utihities u,;, .2, .3, and u,4 for all possible weights consistent with the ordinal
ranking of attributes, 1 e, for all possible weights determined by expression (4)

Therefore, let us first estimate

U U
Un =, UB:LJQF_ﬂ,
Up = U1 + U?z)2 + uz3’ Up = Ul + U2 ‘: Us3 + Usg

We label the entire mterval of overall utihties covering all possible combinations of weights for
the case of ordinal ranking as the “uncertainty nterval” This corresponds to all points within
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triangular pyramid ABCD The term “uncertainty interval” reflects the uncertainty in overall
utility caused by the lack of knowledge about the actual values of weights This interval may be
represented on a numerical axis as a numeric interval [Uyp, Uy|, where the interval’s bounds Uy,
and Uy equal accordingly to maximum and mimimum value of linear overall utihty form (4) In
other words, Uy, and Uy are the values of current overall utihity in the lowest and highest point
of the uncertainty interval (in the extreme pomnt with the highest current value of utility) for the
alternative under analysis
In accordance with the above, we can wnte down the following expressions

UH = maX{UA,UB,UC,UD}, Ué mln{UAvUBvU01UD} (5)
We can also estimate the value of overall utility in the center of the uncertainty interval
Ug -U,
Uy = _HT_L (6)

The information about the estimated value may be very valuable to the decision maker from the
point of view of both deeper understanding of an initial situation and ways this situation could
be improved Let us demonstrate for the above example

First, let us calculate overall utilities using (5) and (6) for all alternatives

For Alternative New York

Uy = 06438, Ur = 01750, Up = 04094

For Alternative Los Angeles

Uy =0 7688, Uy = 02750, Un = 05219

For Alternative Phoenix

Ug = 05313, U = 04250, Up =04782

For Alternative Houston

Uy = 05375, Up = 04250, Up = 04813

For Alternative Denver

Ug = 04750, Ur = 0 3250, U = 04000

For Alternative Dallas

Ug = 05125, Ur = 03031, Upm = 04078
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Table 12
New York Los Angeles Phoenix Houston Denver Dallas Nashville
A 0175 0275 0425 0450 0475 0512 0 550
B 0487 0637 0462 0425 0362 0 356 0325
C 0525 0 692 0442 0450 0325 0304 0250
D 0644 0 769 0531 0537 0444 0303 0187

For Alternative Nashville

Uy = 0 5500, Ur = 01875, Up = 03688

Ranking alternatives by the value of Ups (the center of uncertainty inteival) provides almost
the same results as ranking by centroid powmts The only difference 1s the alternatives Denver
and Dallas changed places See Table 12 At point A, Nashville 1s preferred At powmnts B, C,
and D, Los Angeles 1s preferred Note that New York 1s dominated by Los Angeles, but that the
other six alternatives are all nondominated

Uncertainty intervals can be developed for each alternative These uncertamty intervals provide
a means for a deeper understanding of the current situation Although alternative Los Angeles
seems to be better than the others, it cannot be guaranteed that this alternative will be the
best under all possible sets of weights satisfying the ordinal specification If a decision-maker 1s
able to clearly choose among existing alternatives, there 1s no need n further analysis On the
other hand, if there 1s some hesitation, our approach proposes ways for improvement of a current
alternative See Table 13

Table 13

New York Los Angeles Phoenix Houston Denver Dallas Nashville

Uy 0644 0 769 0531 0537 0475 0512 0 550
Upt 0409 0522 0478 0481 0400 0 408 0 369
U 0175 0275 0425 0425 0325 0303 0187

Let us assume that decision-maker wishes to umprove alternative Los Angeles n such a way
that 1t will become absolutely the best choice Following linear programming sensitivity analy-
sis, consider changing only one of the values of conditional utilities ug1, ugg, u23, and ugy We
eliminate alternative New York, as 1t 1s dominated by Los Angeles From analysis of the uncer-
tainty interval for alternative Los Angeles, we can make two important conclusions The first
1s positive—after elimmation of New York, pomnts D, C, and B for alternative Los Angeles are
located higher than the highest points of the uncertainty intervals for all remaining alternatives
Therefore, only point A needs to be “raised” to provide an absolute dominance for alternative
Los Angeles (pomnts B, C, and D will never “descend”, since, n accordance with (1), they are
the increasing functions of conditional utilities)

The second conclusion 1s negative—since the lowest point of the uncertainty mterval 1s pomnt A,
1t may be “raised” only by the way of increase i conditional utility ue; (U1a = ug1) Therefore,
no wmprovements in growth, skill, and transport will make alternative Los Angeles absolutely
better than the other five alternatives The only way to ensure strict dominance for alternative
Los Angeles 1s to cut 1ts cost

For the currently analyzed alternative, let us designate Upay the value of maximum possible
overall utility for all other alternatives (the highest point of all uncertainty intervals for all alter-
natives excluding the current one) After the preliminary elimination of dominated alternative
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New York, alternative Nashville will have the greatest value of Uy among all remaining alter-
natives (excluding the current alternative Los Angeles) Therefore, Unax = Uy (for Nashville)
= 05500 Although alternative Nashville was ranked last, this alternative s the toughest for Los
Angeles to dominate This 1s because the rank order of extreme points for Nashville 1s opposite
to that of Los Angeles

The increase Au; of conditional utility u;, necessary to provide an absolute dominance of
alternative Los Angeles over all the other ones, may be found from the expression

Uao + Aty > Unnax (")
Therefore, the mmimum required value of this increase Au;g 1s determined as follows

Auyg = Unax — Ugo = 0 5500 — 0 2750 = 0 2750 (8)
For the newly generated alternative, we calculate the overall utihities at the extreme points

Ua = Unax = 05500,

0
Up = Ugo + % — 06375 + 2279 _ ¢ 7750,
Ue =UCO+%‘l — 06917 + 2270 _ 7834,
02
UD=UDO+% ~ 07688 + 2210 _ (8376

After this improvement, alternative Los Angeles would have the level of utility equal to 0 5500
at the lowest point of 1ts uncertainty nterval This will provide a strict dormnance over all the
other alternatives

We can also use the formulation to calculate

(cost — 7)
8
cost = 15 — 8 » utility = 15 — 8 x 0 5500 = $10 6 mullion

utihty =1 — [ ] , the corresponding required value of cost,

If alternative Los Angeles has the value of cost 10 6 milhon dollars (as, for example, alternative
Nashville), 1t will become absolutely the best choice

This case mvolved limited specific changes The number of changes, 1n general, can involve a
number of degrees of freedom For instance, mn the case of the Nashville site, for weight set A 1t 1s
the preferred choice (1t has the lowest cost) However, 1t 15 the poorest performer on each of the
other three criteria For the other extreme points, the required improvement could come from
any of these three criteria (or for that matter, improving the Nashville site’s cost even more)

At weight set B, there 1s a 05 weight for both cost and growth Either or both of those
measures could be improved for the Nashville site, such that the overall value for this site would
equal or exceed the highest other alternative for this weight set (the Los Angeles site, with
a value of (05 x 0275) + (05 x 10) = 06375) Moving on to weight set C(1/3,1/3,1/3,0),
Nashville currently has a value calculation of 0 250, which 1s the worst of all alternatives The
best alternative score at this set of weights 1s for Los Angeles, at 0 692 Improvement on no
single criterion would be sufficient to make Nashwille have as high a score as Los Angeles An
infimte number of combinations of improvement would Similar results occur for weight set D
(1/4,1/4,1/4,1/4)

6. CONCLUSIONS

The present article’s main objective 1s to elaborate a new approach extending estimation of
a centroid point for the product of weight times utihty A secondary purpose is to use this
framework to show how sensitivity analysis could be conducted
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Elcitation of weights is usually a time consuming process and 1s often controversial, as well It
1s difficult to derive exact weights, and 1t 1s also difficult to determine consistent boundaries for the
mtervals within which actual weights are located In such circumstances, ordinal ranking could
be a reasonable compromise that uses input of consistent information and often provides output
1ank order of alternatives similar to the rank order based upon the use of cardinal information

The proposed approach provides the decision-maker with more information about the degree
and sources of uncertainty with respect to a preferred solution It adds mimimization of the
maximum error by estimating the value of an overall utihity in the center of the uncertainty
mterval It also provides the decision-maker with information about the positions of all extreme
pomts for all competing alternatives If a decision maker 1s hesitant about choosing among
existing alternatives, the proposed approach allows determination of which improvements in the
values of existing alternatives’ parameters will result 1n increasing its perfoimance to the level
where this alternative becomes obviously preferable to all the other alternatives
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